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Abstract. In this work we present a full selfconsistent set of nonlinear equations which unifies the nonlinear
elasticity theory equations, the Boltzmannn transport theory and the Maxwell equations for quasiparticles
with arbitrary dispersion laws in nonstationarily deformed crystals with arbitrary (but linear) constitutive
relations. Transformations to replace the Galilean ones are obtained, the quasiparticle mechanics in a
Hamiltonian form is deduced, and a Boltzmann-type transport equation (valid in the whole Brillouin
zone) is derived. The theory may be applied to metals, semiconductors, quantum crystals, low-dimensional
structures etc.

PACS. 05.60.-k Transport processes – 05.20.-y Classical statistical mechanics – 41.20.-q Applied classical
electromagnetism

1 Introduction

Solids are that right physical system where the geometry
plays a fundamental role. It changes the form of the basic
conservation laws related to the properties of the space.
The periodicity of the crystal lattice breaks the homogene-
ity of the space. As a result, the momentum is not con-
served. It becomes a bad quantum number and the energy
spectrum and quantum states are classified in terms of the
quasimomentum, k. The state of the elementary excita-
tions (the quasiparticles) are described not by their posi-
tions and velocities, but by the corresponding wave func-
tion and dispersion relation ε(k). Both these quantities
are strongly dependent on the lattice geometry. There is
a fundamental difference between particles and quasipar-
ticles in continuous media and those in crystalline bodies.
The crystal lattice is a privileged (and not inertial) coor-
dinate frame. The quasiparticles are well defined only in a
given ideal periodic lattice and there are no Galilean trans-
formations to any other lattice frame. Hence, the mechan-
ical equations for quasiparticles in lattice structures have
to be rederived. They must be expressed in terms of the
dispersion law and quasimomentum, and transformation
relations to replace Galilean ones must be found. Another
fundamental problem is the behavior of the quasiparti-
cles in real structures that are always deformed (due to
elastic waves, defects, external fields etc.) In such systems
the quasimomentum is not completely conserved. And, fi-
nally, one needs a new scattering theory and new trans-
port equation which solutions must satisfy the periodicity
conditions applied by the lattice.

The situation becomes even more complicated for
charged quasiparticles in electromagnetic fields. Two typ-
ical problems come to life immediately. One comes from
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the electrodynamics of macroscopic bodies where there is
still no consensus about the form of the field momentum
and the corresponding electromagnetic stress tensor [1–3]
(this problem is known as Minkowski-Abraham contro-
versy as well). The other is a typical solid state prob-
lem related to the momentum-quasimomentum duality in
quasiparticle and photon description (put by Blount [4]
and Peierls [5,6]). Let us mention that even the form of the
Lorentz force on a (quasi-) electron in conducting or va-
lence band becomes questionable. In fact, these open ques-
tions show that the electrodynamics of crystalline bodies
is still far from its perfection.

These problems are as old as the quantum theory of
solids itself. There were many attempts to solve them,
but unfortunately not consistent enough and in the frame
of a linear approximation only. More information and a
critical review can be found in [8] and the bibliography
cited there.

2 Quasiparticle mechanics

Our starting point in deriving the quasiparticle (say, con-
ducting electron) mechanics is that the dispersion law ε(k)
plays the role of both Hamiltonian and energy in a lattice
frame in rest (or moving with a constant velocity). This
is a privileged frame. In this frame all physical quantities
(energy, momentum etc.) are periodic functions in k-space.
If the lattice is deformed, then the dispersion law becomes
a function of coordinates. Such a description (known as
local lattice approach) is justified by the fact that the dis-
persion relation is established in a region of several lat-
tice constants while the characteristic length of the de-
formation is much larger (otherwise the deformations are
not elastic as supposed here). The dependence on the
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coordinates enters into the dispersion relation by means
of the deformations. In case of small deformations

ε(k, uik) = ε(k) + λik(k)uik (1)

where λik(k) are known as deformation potential con-
stants. In this notation the Hamilton equations of motion
have the form:

ṙ′ =
∂ε

∂k
k̇ =

∂ε

∂r′
(2)

where r′ and k are the coordinates and quasimomentum in
the lattice frame. A generalization [9–11] of equation (1)
is a dispersion law depending on the metrical tensor gik

instead of the tensor of small deformations uik. The re-
lation between gik and the full deformation tensor wik is
wik = (1/2)(gik−

◦
gik) where

◦
gik corresponds to the unde-

formed crystal lattice [7].
Equations (2) are written using canonically conjugate

variables r′ and k. They have the same form as in a ho-
mogeneous media with r′ and k for coordinates and mo-
mentum respectively. However, quasimomentum appears
as a result of the lattice discreteness and hence cannot be
conjugate to the ordinary continuous coordinate. Strictly
speaking [12], it is conjugate to a discrete coordinate
rN = Nαaα assigned to the lattice site number N (where
aα are the lattice vectors). These are the same quantities
as in the Wannier wave-function

W (r − rN) =
1√N
∑
k

exp(−ikrN)ψk(r)

where N is the number of lattice cells and ψk(r) is the
Bloch function. In a continuum limit rN and k can be
considered as smooth conjugate variables. The physical
infinitesimal distance (small compared with the charac-
teristic deformation length but large compared to the in-
teratomic distances) can be written then in the form [9]:

dr = aαdNα + u̇dt (3)

where u̇ is the lattice velocity. In a deformed crystal the
lattice vectors aα(r, t) are functions of the coordinates
and the time. Their time-evolution equations can be found
from plain geometrical considerations [9] and read:

ȧα + (u̇∇)aα − (aα∇)u̇ = 0. (4)

We introduce also the reciprocal lattice vectors aα(r, t).
They satisfy the relations

aα.aβ = δα
β , aα

i aαk = δik (5)

and the time evolution equation

ȧα + ∇(aαu̇) = 0. (6)

The metrical tensors describing the deformations in the
real and reciprocal spaces are gαβ = aαaβ and gαβ = aαaβ

respectively.

It follows from (3) that

aα = ∇Nα, aα =
∂r
∂Nα

, u̇ = −aαṄ
α. (7)

Hence, the functions Nα(r, t) fully describe the lattice ge-
ometry. They give the number of steps in the lattice (each
of them being equal to the corresponding local value of the
lattice vector aα). We call these quantities discrete coor-
dinates. The canonically conjugate variables are the in-
variant quasimomentum components and will be denoted
by κ. In this dimensionless notation the dispersion law
has the form ε(κ, gαβ) and all physical quantities have a
constant period in the κ-space 2π (not 2πaα).

The Hamilton equations of motion in this notation
were derived in [9] (see also Ref. [13,8]). In L-system they
read:

ṙ =
∂H(p, r, t)

∂p
, ṗ = −∂H(p, r, t)

∂r
(8)

where the Hamiltonian is a function of the coordinates r
and quasimomentum p in the L-system according to the
relations:

r = r′ + u̇, p = καaα +mu̇ (9)

H(p, r, t) = ε(κ, gαβ) + pu̇− mu̇2

2
(10)

and ε = ε(aα(p−mu̇), gαβ) is the dispersion law in which
the components of the invariant quasimomentum κ are
replaced by

κα = aα(p −mu̇) = kaα (11)

according to (9). ε(aα(p−mu̇), gαβ) is a periodic function
of p with periods 2π�aα determined by the reciprocal lat-
tice vectors corresponding to the deformed local lattice.
This is the reason to call p the quasimomentum of the
quasiparticle in L-system. Let us note that the dispersion
law is ‘originally’ dependent on the invariant quasimo-
mentum κ, not on the quasimomentum k.

Equations (9) are the generalized Galilean transforma-
tions for quasiparticles. The energy in L-system is

E =
mu̇2

2
+mu̇

∂ε

∂p
+ ε =

mu̇2

2
+ p0u̇ + ε (12)

where p0 = m
∂ε

∂p
is the average momentum (the mass

flow) in C-system. Expression (12) is a periodic function
of p and is in agreement with the Galilean principle.

3 Boltzmann equation

Boltzmann equation for a quasiparticle distribution func-
tion f(p, r, t) in L system can be derived by the condition
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that the full derivative of this function be equal to its
change due to the collisions:

∂f

∂t
+
∂f

∂r
ṙ +

∂f

∂p
ṗ = Îf (13)

where Î is the collision operator. The derivatives ṙ and ṗ
are replaced using Hamilton equations. This gives

∂f

∂t
+
∂f

∂r
∂H

∂p
− ∂f

∂p

(
∂H

∂r
− F

)
= Îf. (14)

For real gases the left-hand side of this equation is well
defined by the classical Hamilton equations. In the case
of quasiparticles under consideration equations (2) with
Hamiltonian of the form (10) have to be used.

It can be shown [9,8] that the solution of the
Boltzmann equation (14) is a periodic function f(p, r, t) =
f (p + 2π�aα(r, t), r, t) although the Hamiltonian (10)

contains aperiodic terms
(
∂f

∂p
∂H

∂r

)
.

The transformation to the new variables can be done
using the following relations, obtained by means of the
evolution equations (4, 6):

κ̇α = aα

(
κβ∇(aβ u̇) −mü

)
(15)

∂

∂p
= aα

∂

∂κα
(16)

(
∂

∂r

)
p

=
(
∂

∂r

)
κ

+
(
κβaβ∇aαk −maαk∇u̇k

) ∂

∂κα
(17)

(
∂

∂t

)
p

=
(
∂

∂t

)
κ

+
(
κβaα∇(aβ u̇) −maαü

) ∂

∂κα
· (18)

As a result, the kinetic equation for the partition func-
tion f(κ, r, t) takes the form:

df
dt

+ aα
∂ε

∂κα

(
∂f

∂r

)
κ
− aα

∂f

∂κα

{
m

du̇
dt

+
(
∂ε

∂r

)
κ

− m
∂ε

∂κβ
aβ × curl u̇− F

}
= Îf (19)

where
d
dt

=
∂

∂t
+ (u̇∇), F is the external force, and all

quantities are differentiated with respect to the coordi-

nates and the time at constant κ. The term m
du̇
dt

takes
into account noninertial properties of the local frame. This
is the term which is responsible for the Stewart-Tolman
effect in metals.

The term

m
∂ε

∂κβ
aβ × curl u̇ (20)

is of essentially new kind and cannot be obtained in linear
theories. It is proportional to the bare mass m and, hence,

is also responsible for noninertial effects. In fact, aβ
∂ε

∂κβ
is

the quasiparticle velocity with respect to the lattice. If the
body rotates with a constant velocity Ω, then curl u̇ = 2Ω
and the expression (20) represents the Coriolis force.

Equation (19) does not contain any nonperiodic terms.
It follows from the form of the Hamiltonian (10) that the
velocity ∂H/∂p is a periodic function. Hence, external
forces F which depend on the velocity and its derivatives
are permissible. A force of this kind is the Lorentz force.
In our notation it has the form:

FL = −eE− e

c

∂ε

∂κα
aα × B− e

c
u̇× B (21)

(the electron charge is taken equal to −e, e > 0). Substi-
tuting FL into (19) yields

∂f

∂t
+
(
u̇ + aα

∂ε

∂κα

)
(∇f)κ − aα

∂f

∂κα

{
∇
(
ε+

mu̇2

2

)
κ

+
e

c

(
u̇ + aα

∂ε

∂κα

)
× B̃ + eE +mü

}
= Îf . (22)

The quantity Ṽ = u̇+aβ
∂ε

∂κβ
=
∂H

∂p
is the velocity of the

quasiparticle in L-system. It is worth noting that the sum
ε + mu̇2/2 in (22) is not the quasiparticle energy E (12)
in L-system. For equations (10–12) one has:

ε+
mu̇2

2
= E − p0u̇ = H − ku̇

The magnetic field enters in the transport equation only
in a combination

B̃ = B− mc

e
curl u̇. (23)

If one introduces the vector potential A (B = curlA),
then the right hand side of (23) takes the form

− c
e

(
mu̇− e

c
A
)

= − c
e
P (24)

where P is the well known generalized momentum.
An essential part of any theoretical work in quasipar-

ticle kinetics is integrating of diverse physical quantities
over the Brillouin zone, transforming such integrals by
parts, as well as differentiating with respect to coordinates
and the time. However, in a nonstationary case the bound-
aries of the Brillouin zone are moving under the time-
varying deformations and become dependent not only on
a deformation in a given instant but also on the velocity of
the lattice. As a result, the integration over the Brillouin
zone does not commutate with the differentiation with re-
spect to r and t. This noncommutativity manifests itself
in some fluxes through the zone boundaries. This effect
is important for nonequilibrium systems, open Fermi sur-
faces as well as for all cases when the distribution function
or its derivatives do not vanish on the zone boundaries.
This kind of difficulties can be passed over by introducing
a renormalized partition function

ϕ(κ, r, t) = f/
√
g. (25)
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The Boltzmann kinetic equation for ϕ(κ, r, t) has the
form

ϕ̇ + div
{(

u̇ + aα
∂ε

∂κα

)
ϕ

}
− aα

∂

∂κα
ϕ

{
∇
(
ε+

mu̇2

2

)
κ

− m

(
u̇ +

∂ε

∂κβ
aβ

)
× curl u̇ +mü − F

}
= Îϕ. (26)

4 Electrodynamics of deformable solids

In this section we derive the full set of equations describing
the behavior of deformable crystalline bodies with quasi-
particle excitations in electromagnetic fields. The case of
metals was considered in [9,13]. The general case was con-
sidered in [8,14]. We shall pay attention here to the most
interesting case of dielectrics. In fact, the Maxwell equa-
tions in their general form

curlE = −1
c

∂B
∂t

, curlH =
4π
c

je +
1
c

∂D
∂t

, (27)

divD = 4πq, divB = 0, (28)

have a limited application. The two currents in the right
hand site of the Ampère law (27) can be considered as a de-
composition with respect to the electric field je = σE and
its time derivative Ḋ ∼ ωE. Usually, these two terms are
of different order of magnitude. In metals the displacement
current is neglected (due to large conductivity σ) while in
dielectrics it dominates. Therefore, we shall neglect the
current j and the extraneous charges q in (27) and (28).
We suppose also linear constitutive relations D′ = εE′ and
B′ = µH′. The permeabilities µ(gαβ) and ε(gαβ) are func-
tions of time dependent deformations and this dependence
is in general anisotropic. This means that the derivatives

εαβ = 2 ∂ε
∂gαβ and µαβ = 2

∂µ

∂gαβ
are matrices. The primes

are used to show that the constitutive relations refer to
the co-moving lattice frame. In L-system they read

D +
1
c
u̇ × H = ε

{
E +

1
c
u̇ × B

}
(29)

B− 1
c
u̇× E = µ

{
H− 1

c
u̇ × D

}
·

A full selfconsistent set of equations has to contain
Maxwell’s equations, Boltzmann equation and a dynamic
(elasticity theory) equation. To derive it we turn to the
conservation laws. The mass conservation law (continuity
equation) is

mṅ+ div j0 = 0 (30)

where

n = 〈f〉, j0 = m

〈
∂H

∂p
f

〉
= m

〈
∂ε

∂p
f

〉
+mnu̇ (31)

and 〈...〉 =
∫

d3k . . . stands for integral over the Brillouin
zone. Alternatively, 〈〈. . . 〉〉 =

∫
d3κα. Equation (30) fol-

lows directly from the Boltzmann equation [13].
The total mass current is

J0 = ρu̇ + j′0, j′0 = m

〈
∂ε

∂p
f

〉
(32)

where ρ = ρ0 +mn is a sum of the densities of the lattice,
ρ0, and quasiparticles.

The quantities ρ and J0 satisfy the mass continuity
equation

ρ̇+ divJ0 = 0. (33)

The full momentum J is a sum of J0 and the field mo-
mentum g:

J = J0 + g. (34)

Note, that in this case the full momentum does not coin-
cide with the mass flow!

Our aim is to determine momentum and energy fluxes
Πik and Q in a way as to satisfy the continuity equa-
tion (33), the momentum conservation law

J̇i + ∇kΠik = 0, (35)

and the energy conservation law

Ė + divQ = 0. (36)

The energy in L-system is given by the expression

E =
1
2
ρ0u̇2 + E0(gαβ) + 〈〈Eϕ〉〉 +W, (37)

where E0(gαβ) is the strain energy in C-system, and W is
the field energy.

The time derivative of the energy (37) is then

Ė = ρu̇ü +
1
2
ρ̇u̇2 +

∂

∂t
〈〈εϕ〉〉 +müaα

〈〈
ϕ
∂ε

∂kα

〉〉
+ Ė0

+mu̇ȧα

〈〈
ϕ
∂ε

∂kα

〉〉
+mu̇aα

〈〈
ϕ
∂ε̇

∂kα

〉〉

+mu̇aα

〈〈
ϕ̇
∂ε

∂kα

〉〉
+ Ẇ . (38)

The time derivative of the elastic energy E0(gαβ) (as well
as of any function of gαβ) can be taken making use of the
identity

dg = −ggαβdgαβ. (39)

Therefore,

ġ = −ggαβ ġ
αβ = −gaαaβ(ȧαaβ + aαȧβ)

The time derivatives can be eliminated using the evolution
equation (6). This yields

Ė0 = σαβa
α
i a

β
k

∂u̇i

∂xk
− u̇∇E0. (40)
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All other time derivatives in (38) can be transformed
to space derivatives using conservation laws, Boltzmann
equation and evolution equations. Finally, the time deriva-
tive of the energy (38) can be written in the form

Ė + ∇k

{
1
2
ρu̇2u̇k + u̇i (Πik − ρu̇iu̇k + E0δik + 〈〈εf〉〉δik)

− 1
2
mu̇2

〈
∂ε

∂pk
f

〉
+
〈
ε
∂ε

∂pk
f

〉}

=
∂u̇i

∂xk

{
Πik − ρu̇iu̇k + σik − 〈λikf〉 + E0δik

− u̇ij0i − u̇kj0i

}
+ 〈εÎf〉 +

〈
FL

∂ε

∂p
f

〉
+ Ẇ − u̇ġ(41)

where

λik = 2
∂ε

∂gαβ
aα

i a
β
k σik = −2

∂E0

∂gαβ
aα

i a
β
k . (42)

The last three terms in (41) describe the change of the
field energy, field momentum and the effect of external
forces. They depend on the concrete type of interaction
and should be omitted if there are no external fields. Let
us first consider this case.

In the absence of energy dissipation equation (41) must
coincide with the energy conservation law. On the other
hand the fluxes of energy and momentum are functions
of the thermodynamic variables and velocities, but do not
depend on their time and space derivatives. This enables
us to obtain from (41) unique expressions for the desired
quantities

Qi = Eu̇i +
〈
ε
∂H

∂pi
f

〉
− 1

2
u̇2Ji +Πiku̇k (43)

and

Πik = −(σik + E0δik) + ρu̇iu̇k

+〈λikf〉 −m

〈
f
∂ε

∂pi

∂ε

∂pk

〉
+m

〈
f
∂H

∂pi

∂H

∂pk

〉
· (44)

The momentum flux tensor consists of two parts, Lik

and Pik, which correspond to the contributions of the lat-
tice and quasiparticles respectively:

Lik = −(σik + E0δik) + ρ0u̇iu̇k (45)

Pik = 〈λ0
ikf〉 +m

〈
f
∂H

∂pi

∂H

∂pk

〉
(46)

where

〈λ0
ikf〉 = 〈λikf〉 −m

〈
f
∂ε

∂pi

∂ε

∂pk

〉
(47)

is the quasiparticle momentum flux tensor (the quasipar-
ticle stress tensor) in the system of center of mass while
〈λikf〉 corresponds to the co-moving frame. It can be

shown [8] that the sum σik + E0δik corresponds (but co-
incides in linear approximation only) to the stress tensor
of the linear elasticity theory and turns into pressure for
isotropic media.

Finally, the equation of the elasticity theory for an
elastic crystalline body with quasiparticle excitations in
the absence of external fields takes the form:

∂

∂t
(ρu̇i) = −∂Lik

∂xk
− ∂Pik

∂xk
− ∂j0i

∂t
· (48)

The last term in the right-hand side describes the force
which appears when varying the quasiparticle mass cur-
rent (32) with respect to the lattice.

Let us consider now the contribution of the field terms〈
FL

∂ε

∂p
f

〉
+ Ẇ − u̇ġ. (49)

We restrict ourselves to the linear (with respect to u̇/c)
terms. Then, the quantity〈

FL
∂ε

∂p
f

〉
= j′e

(
E +

u̇
c
× B

)
= j′eE

′. (50)

This term equals zero for j′e = 0. To calculate Ẇ let
us first consider the variation of the field energy W ′ =
(1/4π)(E′D′ + H′B′) in the lattice frame. By definition

δW ′
E =

1
4π

E′δD′ =
1
4π

{
E′2δε+ εE′δE′

}

=
E′2

8π
δε+ δ

εE′2

8π
· (51)

Therefore, the variation of W in time is:

Ẇ =
1
4π

(EḊ + HḂ)

=
1
4π

(
E′ − u̇

c
× B

)(
Ḋ′ − u̇

c
× Ḣ

)

+
1
4π

(
H′ +

u̇
c
× D

)(
Ḃ′ − u̇

c
× Ė

)

=
∂

∂t

εE′2 + µH ′2

8π
+
E′2

8π
ε̇+

H ′2

8π
µ̇+ u̇(ġ + Ġ) (52)

where

g =
E × H

4πc
, G =

D × B
4πc

· (53)

The time derivatives ε̇ and µ̇ are calculated in the same
manner as (40):

ε̇ = −εik ∂u̇i

∂xk
− u̇∇ε, µ̇ = −µik

∂u̇i

∂xk
− u̇∇µ. (54)

Substituting (54) in (52) and making use of the Poynting
theorem one obtains

Ẇ − u̇ġ = −divS′ −
(

E′2

8π
εik +

H′2

8π
µik

)
∂u̇i

∂xk

−u̇

(
E′2

8π
∇ε+

H′2

8π
∇µ
)

+ u̇Ġ. (55)
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Neglecting terms of the order 0(v2/c2) in (52) means
that one may replace Ġ by Ġ′. The time derivative Ġ′
can be transformed using Maxwell’s equations in the co-
moving frame. This yields:

u̇Ġ′ = u̇i∇kt
′
ik + u̇

(
E′2

8π
∇ε+

H′2

8π
∇µ
)

(56)

where

t′ik =
ε

4π

(
E′

iE
′
k − E′2

2
δik

)
+

µ

4π

(
H ′

iH
′
k − H ′2

2
δik

)

(57)

is the Maxwell’s stress tensor in the co-moving frame. Fi-
nally,

Ẇf = −divS′ + ∇ku̇it
′
ik − T ′

ik

∂u̇i

∂xk
(58)

where

T ′
ik =

1
4π

{
εE′

iE
′
k +

E′2

2
(εik − εδik)

+ µH ′
iH

′
k +

H ′2

2
(µik − µδik)

}
· (59)

Hence, one has to add the term

Qf
i = S′

i − u̇kt
′
ik = Si − u̇iW (60)

to the energy flux density in (43), as well as the term −T ′
ik

to the momentum flux tensor Πik in (44).
The elasticity theory equation takes then the form:

∂

∂t
(ρu̇i) = −∂Lik

∂xk
− ∂Pik

∂xk
+
∂T ′

ik

∂xk
− ∂gi

∂t
· (61)

The electromagnetic stress tensor T̂ ′ is written in the
lattice frame. In L-system it has the form:

Tik =
1
4π

(εEiEk + µHiHk) + (εik − εδik)
E2

8π
(62)

+(µik − µδik)
H2

8π
+ u̇iGk + u̇kGi − u̇igk − u̇kgi.

The last four terms are of the order u̇/c smaller, and can
actually be neglected for all reasonable problems of the
solid state physics.

The full system of equations of electrodynamics of
crystalline dielectrics with quasiparticle excitations con-
sists of the elasticity theory equation (61), Boltzmann
equation (22) or (26) and Maxwell’s equations supple-
mented with corresponding constitutive relations.

A significant difference between Tik and the Maxwell-
Abraham stress tensor is the presence of the derivatives
εik and µik. In an isotropic media the operator [8]

2aα
i a

β
k

∂

∂gαβ
→ δikρ

∂

∂ρ
· (63)

5 Conclusion remarks

We derived a general nonlinear self-consistent set of
equations applicable to both crystalline and homoge-
neous continuous media with quasiparticle excitations.
Some instructive examples can be found elsewhere (see
e.g. [8,14,15]). In particular, at T = 0 the Boltzmann
equation can be replaced by the Schrödinger equation.
The quantity |ψ|2 plays then the role of the distribution
function. With this ansatz the theory of Davydov solitons
follows [8,10,11]. It is known that the attempts to general-
ize the method of Davydov to nonzero temperatures have
failed. We believe that if soliton-type excitations exist at
T �= 0, they should be solutions of the nonlinear set of
equations presented here. In addition the effect of electro-
magnetic fields as well as of other external forces on the
soliton motion can be considered.

This work was partially supported by the National Science
Council of Bulgaria, Contract No F-911.
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